28 research outputs found

    Momentum alignment and the optical valley Hall effect in low-dimensional Dirac materials

    Full text link
    We study the momentum alignment phenomenon and the optical control of valley population in gapless and gapped graphene-like materials. We show that the trigonal warping effect allows for the spatial separation of carriers belonging to different valleys via the application of linearly polarized light. Valley separation in gapped materials can be detected by measuring the degree of circular polarization of band-edge photoluminescence at different sides of the sample or light spot (optical valley Hall effect). We also show that the momentum alignment phenomenon leads to the giant enhancement of near-band-edge interband optical transitions in narrow-gap carbon nanotubes and graphene nanoribbons independent of the mechanism of the gap formation. A detection scheme to observe these giant interband transitions is proposed which opens a route for creating novel terahertz radiation emitters.Comment: 28 pages, 9 figure

    Tuning terahertz transitions in a double-gated quantum ring

    Get PDF
    We theoretically investigate the optical functionality of a semiconducting quantum ring manipulated by two electrostatic lateral gates used to induce a double quantum well along the ring. The well parameters and corresponding inter-level spacings, which lie in the THz range, are highly sensitive to the gate voltages. Our analysis shows that selection rules for inter-level dipole transitions, caused by linearly polarized excitations, depend on the polarization angle with respect to the gates. In striking difference from the conventional symmetric double well potential, the ring geometry permits polarization-dependent transitions between the ground and second excited states, allowing the use of this structure in a three-level lasing scheme.Comment: 7 pages, 6 figure

    Electro-absorption of silicene and bilayer graphene quantum dots

    Get PDF
    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.Comment: 7 pages, 7 figure

    2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons

    Get PDF
    Development of on-chip integrated carbon-based optoelectronic nanocircuits requires fast and non-invasive structural characterization of their building blocks. Recent advances in synthesis of single wall carbon nanotubes and graphene nanoribbons allow for their use as atomically precise building blocks. However, while cataloged experimental data are available for the structural characterization of carbon nanotubes, such an atlas is absent for graphene nanoribbons. Here we theoretically investigate the optical absorption resonances of armchair carbon nanotubes and zigzag graphene nanoribbons continuously spanning the tube (ribbon) transverse sizes from 0.5(0.4) nm to 8.1(12.8) nm. We show that the linear mapping is guaranteed between the tube and ribbon bulk resonance when the number of atoms in the tube unit cell is 2 N+ 4 , where N is the number of atoms in the ribbon unit cell. Thus, an atlas of carbon nanotubes optical transitions can be mapped to an atlas of zigzag graphene nanoribbons

    Dynamics of Cryogenic Jets: Non-Rayleigh Breakup and Onset of Nonaxisymmetric Motions

    Get PDF
    We report development of generators for periodic, satellite-free fluxes of mono-disperse drops with diameters down to 10 mikrometers from cryogenic liquids like H_2, N_2, Ar and Xe (and, as reference fluid, water). While the breakup of water jets can well be described by Rayleigh's linear theory, we find jet regimes for H_2 and N_2 which reveal deviations from this behavior. Thus, Rayleigh's theory is inappropriate for thin jets that exchange energy and/or mass with the surrounding medium. Moreover, at high evaporation rates, axial symmetry of the dynamics is lost. When the drops pass into vacuum, frozen pellets form due to surface evaporation. The narrow width of the pellet flux paves the way towards various industrial and scientific applications.Comment: 4 pages, 4 figures, 1 table; final version to appear in Phys.Rev.Lett (minor changes with respect to v1

    Adenosine thiamine triphosphate and adenosine thiamine triphosphate hydrolase activity in animal tissues

    Get PDF
    Adenosine thiamine triphosphate (AThTP), a vitamin B1 containing nucleotide with unknown biochemi­cal role, was found previously to be present in various biological objects including bacteria, yeast, some human, rat and mouse tissues, as well as plant roots. In this study we quantify AThTP in mouse, rat, bovine and chicks. We also show that in animal tissues the hydrolysis of AThTP is catalyzed by a membrane-bound enzyme seemingly of microsomal origin as established for rat liver, which exhibits an alkaline pH optimum of 8.0-8.5 and requires no Mg2+ ions for activity. In liver homogenates, AThTP hydrolase obeys Michaelis-Menten kinetics with apparent Km values of 84.4 ± 9.4 and 54.6 ± 13.1 ¡М as estimated from the Hanes plots for rat and chicken enzymes, respectively. The hydrolysis of AThTP has been found to occur in all samples examined from rat, chicken and bovine tissues, with liver and kidney being­ the most abundant in enzyme activity. In rat liver, the activity of AThTP hydrolase depends on the age of animals

    Π Π°Π±ΠΎΡ‚Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ со структурой p+–p–n+ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации

    Get PDF
    The conditions for realizing the single-quantum detection mode for silicon photomultiplier tubes with the p+–p–n+ structure are studied and data on their characteristics in this mode are obtained. The structure of the experimental setup and the research technique are presented. Measurements of the counting characteristics of the photodetectors, such as the dependences of the counting rate of single-photon pulses, the speed of dark pulses, and the signal-to-noise ratio, have beenΒ performed. The dependences of the counting rate of one-photon pulses on the intensity of optical radiation recorded by a silicon photomultiplier tube are presented. It was found that these dependences had a linear section, the length of which increased with increasing overvoltage of silicon photomultiplier tubes. Also, with an increase in overvoltage, the angle of inclination of the linear section increased. The dependences of the count rate of one-photon and dark pulses, as well as the signal-to-noise ratio on overvoltage, are given. It was found that the counting rate of dark pulses increased with increasing overvoltage. It was found that the dependence of the signal-to-noise ratio on the overvoltage for these silicon photomultiplier tubes has a maximum. To obtain the maximum sensitivity of the studied silicon photomultiplier tubes, it is necessary to select the overvoltage corresponding to this maximum. As a result of comparing the sensitivity of the investigated silicon photomultiplier tubes and avalanche photodiodes, it was found that silicon photomultiplier tubes operating in the single-quantum detection mode have a higher sensitivity compared to avalanche photodiodes in the same operating mode. With a decrease in temperature, this superiority persisted. Also, a decrease in temperature led to a decrease in the minimum value of the intensity of the recorded optical radiation. Thus, the possibility of operation of silicon photomultiplier tubes in the single-quantum registration mode has been proved. These results can be applied in quantum cryptography systems when receiving an optical signal.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ условия Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации для ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ со структурой p+–p–n+ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎΠ± ΠΈΡ… характСристиках Π² этом Ρ€Π΅ΠΆΠΈΠΌΠ΅. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ структура ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ установки ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° исслСдований. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ измСрСния счСтных характСристик Ρ„ΠΎΡ‚ΠΎΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², скорости Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΎΡ‚ интСнсивности оптичСского излучСния, рСгистрируСмого ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹ΠΌ фотоэлСктронным ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ. УстановлСно, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ зависимости ΠΈΠΌΠ΅ΡŽΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ участок, Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ увСличиваСтся с ростом пСрСнапряТСния ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ. Π’Π°ΠΊΠΆΠ΅ с ростом пСрСнапряТСния увСличиваСтся ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ участка. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ ΠΎΡ‚ пСрСнапряТСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ счСта Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² возрастаСт с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ пСрСнапряТСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ ΠΎΡ‚ пСрСнапряТСния для этих ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ максимум. Для получСния максимальной Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ исслСдованных ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ пСрСнапряТСниС, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этому максимуму. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сравнСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ исслСдуСмых ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈ Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠΎΠ΄ΠΎΠ² установлСно, Ρ‡Ρ‚ΠΎ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Π΅ фотоэлСктронныС ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации, ΠΈΠΌΠ΅ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»Π°Π²ΠΈΠ½Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠΎΠ΄Π°ΠΌΠΈ Π² этом ΠΆΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π‘ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΄Π°Π½Π½ΠΎΠ΅ прСвосходство сохраняСтся. Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ минимального значСния интСнсивности рСгистрируСмого оптичСского излучСния. Π’Π΅ΠΌ самым Π΄ΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации. Π”Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² систСмах ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ΅ оптичСского сигнала

    Π”Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ срСднСго ΠΈ дальнСго ИК излучСния Π½Π° основС плоских массивов Π³Ρ€Π°Ρ„Π΅Π½ΠΎΠ²Ρ‹Ρ… Π½Π°Π½ΠΎΠ»Π΅Π½Ρ‚

    Get PDF
    A concept of a middle- and far-infrared detector has been proposed. The detector is built as a planar collection of parallel graphene strips of different length and width. The feature of the detector scheme is the concurrent utilization of two different detection mechanisms: excitation in the given frequency range of low-frequency interband transitions inherent in armchair graphene strips and antenna resonances of strongly slowed-down surface waves (plasmon polaritons). It has been shown that matching these two resonances results in the essential detector signal amplification, thus providing an alternative way how to solve the problem of the low efficiency of resonant graphene antennas. An approach is proposed to analyze the design of such detectors, as well as to discuss the ways of tuning the both mechanisms.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ схСма Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° элСктромагнитных Π²ΠΎΠ»Π½ срСднСго ΠΈ дальнСго ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° частот, основанная Π½Π° использовании плоских массивов Π³Ρ€Π°Ρ„Π΅Π½ΠΎΠ²Ρ‹Ρ… Π½Π°Π½ΠΎΠ»Π΅Π½Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡˆΠΈΡ€ΠΈΠ½Ρ‹ ΠΈ Π΄Π»ΠΈΠ½Ρ‹. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ рассматриваСмой схСмы являСтся использованиС для дСтСктирования Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ²: Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ·ΠΎΠ½Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ², присущих Π³Ρ€Π°Ρ„Π΅Π½ΠΎΠ²Ρ‹ΠΌ Π»Π΅Π½Ρ‚Π°ΠΌ Ρ‚ΠΈΠΏΠ° Β«armchairΒ» Π² Π΄Π°Π½Π½ΠΎΠΉ частотной области, ΠΈ Π°Π½Ρ‚Π΅Π½Π½Ρ‹Ρ… рСзонансов повСрхностных Π²ΠΎΠ»Π½ (ΠΏΠ»Π°Π·ΠΌΠΎΠ½-поляритонов). Показано, Ρ‡Ρ‚ΠΎ совпадСниС Π΄Π²ΡƒΡ… рСзонансов, достигаСмоС ΠΏΡƒΡ‚Π΅ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΠ΄Π±ΠΎΡ€Π° гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π°Π½ΠΎΠ»Π΅Π½Ρ‚ ΠΈ настройки химичСского ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π³Ρ€Π°Ρ„Π΅Π½Π°, позволяСт сущСствСнно ΡƒΡΠΈΠ»ΠΈΡ‚ΡŒ сигнал, Ρ‚Π΅ΠΌ самым обСспСчивая Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π½ΠΈΠ·ΠΊΠΎΠΉ эффСктивности рСзонансных Π³Ρ€Π°Ρ„Π΅Π½ΠΎΠ²Ρ‹Ρ… Π°Π½Ρ‚Π΅Π½Π½. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдлагаСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈ Π°Π½Π°Π»ΠΈΠ·Ρƒ Ρ‚Π°ΠΊΠΈΡ… Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ способы настройки ΠΎΠ±ΠΎΠΈΡ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ²

    Зависимости характСристик ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

    Get PDF
    The characteristics dependence on the ambient temperature for three types of silicon photoelectronic multipliers have been studied in this research. The prototypes of Si-photoelectronic multipliers with a p+–p–n+ structure produced by JSC Integral (Republic of Belarus), serially produced silicon photoelectronic multipliers KETEK РМ3325 and ON Semi FC 30035 have been used as objects of research. We present the setup diagram and research technique. Measurements of the photocurrent magnitude versus the illumination intensity, calculations of the critical and threshold intensities, and the dynamic range have been performed. We also present the photocurrent dependences on the illumination intensity at different ambient temperatures. As it was found, these dependences have a linear section, the length of which characterizes the critical intensity value, and the inclination angle of the linear section to the intensity axis characterizes the photodetector sensitivity to optical radiation. It has been determined that the temperature increase leads to an increase in the critical intensity value and to a decrease in the sensitivity value. We present the dependences of the threshold intensity on the overvoltage at different ambient temperatures. The dependence of the threshold intensity on overvoltage is most strongly pronounced when the supply voltage is below the breakdown voltage. It was found that the threshold intensity is increased with the temperature increase and the threshold intensity dependence on the temperature is the same for all investigated photodetectors. It was found that the dynamic range value is decreased with the temperature increase, which is caused by a more significant change in the threshold intensity as compared to the critical one. The results given in this article can be applied when developing and designing the tools and devices for recording optical radiation based on silicon photoelectronic multipliers.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ зависимости характСристик ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды Ρ‚Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ. Π’ качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исслСдования использовались ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Si-Π€Π­Π£ со структурой p+–p–n+ производства ОАО Β«Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Β» (РСспублика Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ), сСрийно выпускаСмыС Si-Π€Π­Π£ KETEK РМ3325 ΠΈ ON Semi FC 30035. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° схСма установки ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° исслСдования. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ измСрСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ„ΠΎΡ‚ΠΎΡ‚ΠΎΠΊΠ° ΠΎΡ‚ интСнсивности засвСтки, расчСты критичСской ΠΈ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ интСнсивности, динамичСского Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° рСгистрируСмого оптичСского излучСния. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ зависимости Ρ„ΠΎΡ‚ΠΎΡ‚ΠΎΠΊΠ° ΠΎΡ‚ интСнсивности засвСтки ΠΏΡ€ΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. УстановлСно, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ зависимости ΠΈΠΌΠ΅ΡŽΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ участок, Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ критичСской интСнсивности излучСния, Π° ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ участка ΠΊ оси интСнсивности – Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Si-Π€Π­Π£ ΠΊ оптичСскому ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΡŽ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ рост Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€ΠΎ- сту Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ критичСской интСнсивности ΠΈ сниТСнию Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ зависимости ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ интСнсивности излучСния ΠΎΡ‚ пСрСнапряТСния ΠΏΡ€ΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. НаиболСС сильно Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ интСнсивности ΠΎΡ‚ пСрСнапряТСния проявляСтся ΠΏΡ€ΠΈ напряТСнии питания Π½ΠΈΠΆΠ΅ напряТСния пробоя. УстановлСно, Ρ‡Ρ‚ΠΎ пороговая ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ излучСния ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ с ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ интСнсивности ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π° для всСх исслСдуСмых Si-Π€Π­Π£. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ динамичСского Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° с ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π·Π²Π°Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠΉ интСнсивности ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с критичСской. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈ конструировании ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ устройств для рСгистрации оптичСского излучСния Π½Π° основС Si-Π€Π­Π£
    corecore